A HEURISTIC METHOD OF SOLVING NONLINEAR PROBLEMS OF THE EHIPTIIC TYPE FOR DOUBLY CONNECTED REGIONS PMM Vol.42, № 2 , 1978, pp. 321-326
 A. D. CHERNYSHOV
 (Voronezh)
 (Received June 14, 1976)

The proposed method is based on the use of certain information of a quali tative or quantitative character about the properties of quantities appearing in a nonlinear boundary value problem for its formulation, and thus to simplify the original problem. Such information can be provided by solutions of similar problems, experimental data, and by some other considerations. The extent of simplification evidently depends on the available information and the manner of its application. The approximate solution obtained with the use of such information is called here the zero approximation. The proposed iter ation method differs essentially from known methods by the procedure of determining the zero approximation, and in the iteration process algorithm. It reduces a problem in partial derivatives to the solution of an ordinary differential equation for each approximation, which considerably reduces the amount of computations as compared to that required by the method of finite differences and finite elements. The zero approximation derived by the proposed method is often equivalent to two or three approximations obtained by the method of small parameter (depending on the magnitude of the latter). The question of the method convergence is not considered here, but the theorem about the iteration process uniform convergence to the solution is proved.

1. Let us consider an example of the most effective method of information introduction in the initial statement of a boundary value problem. We consider for simpli city the elliptic type nonlinear equation

$$
\begin{equation*}
D^{*}\left(U_{x x}, U_{x y}, U_{y y}, \quad U_{x}, U_{y}, U, x, y\right)=0 \tag{1.1}
\end{equation*}
$$

where D^{*} is an analytic function of eight arguments and U is the unknown function dependent on coordinates x and y. The solution of Eq. (1.1) is sought in the doubly connected region Ω bounded by two curves Γ_{1} and Γ_{2} in the plane (x, y) whose equations are of the form $\xi_{01}(x, y)=\alpha_{1} \quad$ and $\quad \xi_{02}(x, y)=\alpha_{2}$, respectively. Let the boundary conditions for Eq. (1,1) be of the form

$$
\begin{equation*}
\left.U(x, y)\right|_{\Gamma_{i}}=v_{i}=\mathrm{const}, \quad i=1,2 \tag{1.2}
\end{equation*}
$$

Let us assume that the form of curves $U(x, y)=$ const is a priori known and based on some considerations. We define the curves on which the unknown function is constant by the approximate equation of the form

$$
\begin{equation*}
\xi=\xi(x, y) \tag{1.3}
\end{equation*}
$$

Since in conformity with (1.2) function U is constant along the boundaries Γ_{1} and
Γ_{2}, hence

$$
\begin{equation*}
\left.\xi(x, y)\right|_{\Gamma_{i}}=\alpha_{i}=\mathrm{const} \tag{1.4}
\end{equation*}
$$

Equalities (1.4) can be taken as the equations of boundaries Γ_{1} and Γ_{2}, respectively. In boundary value problems the form of function (1.3) is often known only at the boundaries Γ_{1} and Γ_{2}, i.e.

$$
\begin{equation*}
\left.\xi\right|_{\Gamma_{i}}=\xi_{0 i}(x, y)=\alpha_{i} \tag{1.5}
\end{equation*}
$$

It is reasonable to assume that within the Ω-region function $\xi(x, y)$ varies in the interval $\left[\alpha_{1}, \alpha_{2}\right]$ in some continuous manner. The simplest approximate definition of such function which would satisfy condition (1.4) in accordance with (1.5) is given by the relationship

$$
\begin{equation*}
\left[\xi_{01}(x, y)-\alpha_{1}\right]\left(\xi-\alpha_{2}\right)=\left[\xi_{02}(x, y)-\alpha_{2}\right]\left(\xi-\alpha_{1}\right) \tag{1.6}
\end{equation*}
$$

which can be extended by taking into account additional information about function $\xi(x, y)$.
We are, thus, considering the case in which the information about the behavior of the unknown function $U(x, y)$ allows an approximate formulation of the equation for the set of curves (in this case $\xi=$ const) along which function U varies little.

We pass in the problem (1.1),(1.2) from variables: (x, y) to variables (ξ, η) of which the variables $\eta=\eta(x, y)$ may be arbitrary but such that the Jacobian of transformation $(x, y) \rightarrow(\xi, \eta)$ is nonzero in region $\bar{\Omega}$. Equation (1.1) and boundary conditions (1.2) expressed in new variables are of the form

$$
\begin{align*}
& D\left(U_{\xi \xi}, U_{\xi \eta}, U_{\eta \eta}, U_{\xi}, U_{\eta}, U, \xi, \eta\right)=0 \tag{1.7}\\
& U=v_{i} \quad \text { for } \xi=\alpha_{i}, i=1,2
\end{align*}
$$

If the differnetial equation (1.7) does not explicitly contain variable η, then variable ξ in (1.3) is self-similar and the problem reduces to solving an ordinary differential equation. In the opposite case function U varies along curves $\xi(x, y)=$ const. However according to the method of introduction of variable ξ in (1.3) the variation of U along the curve $\xi=$ const must be small so that derivatives U_{η},
$U_{\xi \eta}$ and $U_{\eta \eta}$ can be negelcted in Eq. (1.7) when deriving the zero approximation, since it is small in comparison with other terms. For the determination of the zero approximation $U_{0}(\xi, \eta)$ we thus obtain a nonlinear differential equation of second order with two boundary conditions

$$
\begin{align*}
& D_{0}\left(U_{0 \xi \xi}, 0,0, U_{0 \xi}, \quad 0, U_{0}, \xi, \eta\right)=0 \tag{1.8}\\
& U_{0}=v_{i} \quad \text { for } \xi=\alpha_{i}, i=1,2
\end{align*}
$$

In the integration of Eq. (1.7) the variable η plays the part of a parameter and, consequently, the approximation U_{0} in (1.8) depends on the two variables ξ and η.

We denote function $\xi(x, y)$ in (1.3) by $\xi_{0}(x, y)$, since it was used in the determination of the zero approximation. Having determined $U_{0}\left(\xi_{0}, \eta\right)$, it is reasonable to assume that the more exact equation of the curve along which the sought solution of $U(x, y)$ does not vary is of the form $\xi=U_{0}\left(\xi_{0}, \eta\right)$, hence for ξ_{0} we substitute the new variable

$$
\begin{equation*}
\xi_{1}=U_{0}\left(\xi_{0}, \eta\right) \tag{1.9}
\end{equation*}
$$

Substituting variables $(x, y) \rightarrow\left(\xi_{1}, \eta\right)$ and repeating the reasoning similar to that used after the introduction of variables when deriving the zero approximation, for the first approximation we obtain, similarly to (1.8), the nonlinear second order ordinary differential equation

$$
\begin{align*}
& D_{1}\left(U_{1 \xi \xi}, 0,0, U_{1 \xi}, 0, U_{1}, \xi_{1}, \eta\right)=0 \tag{1.10}\\
& U_{1}=v_{i} \quad \text { for } \xi_{1}=v_{i}, i=1,2
\end{align*}
$$

To obtain the k-th approximation it is necessary to make the substitution (x, y) $\rightarrow\left(\xi_{k}, \eta\right)$, where

$$
\begin{equation*}
\xi_{k}=U_{k-1}\left(\xi_{k-1}, \eta\right) \tag{1.11}
\end{equation*}
$$

After transformation (1.11) region $\bar{\Omega}$ becomesa doubly connected set $\bar{\Omega}_{k}\left(\xi_{k}, \eta\right)$, where $\bar{\Omega}$ is the closure of region Ω. Since problems of convergence are not con sidered here, we can assume that the doubly connected set $\left\{\bar{\Omega}_{k}\right\}$ has the doubly connected set $\bar{\Omega}^{*}$ as its limit. We set the partial derivatives with respect to the variable η of the unknown function $U_{k}\left(\xi_{k}, \eta\right)$ equal zero

$$
\begin{equation*}
\frac{\partial U_{k}}{\partial \eta}=\frac{\partial^{2} U_{k}}{\partial \eta \eta^{2}}=\frac{\partial^{2} U_{k}}{\partial \varepsilon_{k} \partial \eta}=0 \tag{1.12}
\end{equation*}
$$

Equation (1.1) in partial derivatives is then again of the form of a nonlinear second order ordinary differential equation

$$
\begin{equation*}
D_{k}\left(U_{k \xi_{k} \xi_{k}}, 0,0, U_{k \xi_{k}}, 0, U_{k}, \xi_{k}, \eta\right)=0 \tag{1.13}
\end{equation*}
$$

with boundary conditions (1.14)

$$
\begin{equation*}
U_{k}=v_{i} \quad \text { for } \xi_{k}=r_{i}, \quad i=1,2 \tag{1.14}
\end{equation*}
$$

Note that because assumption (1.12) is not strictly satisfied, function U_{k} is only an approximate solution of problem (1.1),(1.2). If some approximation U_{n} proves to be dependent on the variable ξ_{n} and independent of η, then assumption (1.12) is strictly satisfied for U_{n}, and function $U_{n}\left(\xi_{n}\right)$ is then an exact solution of the input problem. In that case Eq. (1.13) for U_{n} does not contain η.

For a uniformly convergent iteration process the following relationship is satisfied:

$$
\begin{equation*}
\lim \left[U_{k}\left(\xi_{k}, \eta\right)-\xi_{k}\right]=0, \quad k \rightarrow \infty \tag{1.15}
\end{equation*}
$$

We denote the limit function of sequence $\left\{\xi_{k}\right\}$ by ξ^{*}, and shall determine whether the limit ξ^{*} is the solution of the input problem. For this we shall prove the following theorem. If in the described above iteration process the sequence of functions $\left\{U_{k}\right\}$ with all of their first and second derivatives with respect to variables ξ_{k} and η uniformly converge in the doubly connected region $\bar{\Omega}$ to some function ξ^{*} which is twice continuously differentiable with respect to the totality of variables, then that limit function is the solution of the input problem (1.1), (1.2).

To prove this it is sufficient to verify that function ξ^{*} exactly satisfies assump tion (1.12), i.e.

$$
\begin{equation*}
\frac{\partial \xi^{*}}{\partial \eta}=\frac{\partial^{2} \xi^{*}}{\partial \xi^{*} \partial \eta}=\frac{\partial^{2} \xi^{*}}{\partial \eta^{2}}=0 \tag{1.16}
\end{equation*}
$$

The last of equalities (1.16) is evident if the first of these is satisfied. According to the conditions of the theorem it is possible to differentiate equality (1.15) with res pect to variable η, and then, taking into account that ξ_{k} and η are independent variables, obtain

$$
\begin{equation*}
\lim d U_{k}\left(\xi_{k}, \eta\right) / d \eta=0, \quad k \rightarrow \infty \tag{1.17}
\end{equation*}
$$

Since $\lim d U_{k} / d \eta=d \xi^{*} / d \eta$ when $k \rightarrow \infty$, hence (1.17) provides the proof of equalities (1.16).

Partial differentiation of equality (1.15) with respect to variable ξ_{k} successively once and twice shows that the approximation U_{k} for the convergent process has the property

$$
\begin{equation*}
\lim \frac{\partial U_{k}\left(\xi_{k^{\prime}}, \eta\right)}{\partial \xi_{k}}=1, \quad \lim \frac{\partial^{2} U_{k}}{\partial \xi_{k}{ }^{2}}=0, k \rightarrow \infty \tag{1.18}
\end{equation*}
$$

The indicated algorithm for obtaining an approximate solution of problem (1.1), (1.2) admits modifications. Thus, instead of (1,11) another metiod of defining variable, ξ_{k} is possible, for example

$$
\begin{equation*}
\xi_{k+1}=v_{k} U_{k}\left(\xi_{k}, \eta\right)+\left(1-v_{k}\right) \xi_{k}, 1 \geqslant v_{k}(x, y)>0, k \geqslant 1 \tag{1.19}
\end{equation*}
$$

Formula (1,19) is unsuitable for defining ξ_{1} when $k=0$, since the definitions of functions ξ_{0} and $\xi_{k}(k \geqslant 1)$ are essentially different. Hence it is possible to define ξ_{1} as follows:

$$
\begin{equation*}
\xi_{1}=v_{0} U_{0}\left(\xi_{0}, \eta\right)+\left(1-v_{0}\right) U_{0}\left(\xi_{0}, \eta^{*}\right), 1 \geqslant v_{0}(x, y)>0 \tag{1.20}
\end{equation*}
$$

where η^{*} is some characteristic value of variable η which corresponds to region $\bar{\Omega}$. A direct test shows that the uniform convergence of the iteration in $\bar{\Omega}$ implies the uniform convergence of function U_{k} in $\bar{\Omega}$ to the same limit function. Hence the theorem on the convergence of approximations to the solution remains valid in the case of (1.19).
2. Let us consdier as an example the problem of pure shear of visco-plastic mat erial between two cylindrical surfaces [1] in the absence of rigid zones in the flow region. In a rectangular Cartesian system of coordinates (x, y, z) the surfaces of the stationary
Γ_{1} and moving Γ_{2} plates are defined by equations

$$
y=y_{0}=h\left(\Gamma_{1}\right), y=y_{1}=h \delta \cos x\left(\Gamma_{2}\right)
$$

The mobile plate translates at constant velocity v_{a} parallel to the z-axis. In the case of small amplitudes δ this problem can be solved by the method of the small parameter, in which the solution of the Couette problem corresponds to the zero approximation. We shall solve the problem by the method described in Sect. 1 without making any assumptions about the magnitude of parameter δ.

We assume in this problem that each particle has a single component of velocity U parallel to the z-axis, i.e.

$$
u_{z}=U(x, y), u_{x}=u_{y}=0
$$

Among components of the strain rate tensor the nonzero components are

$$
\gamma_{x}=\partial U / \partial x, \quad \gamma_{y}=\partial U / \partial y
$$

We relate velocity U to v_{0}, stresses τ_{x} and τ_{y} to the yield stress k_{0}, the coordinates x and y to the quantity h, and the rates of shear γ_{x} and γ_{y} to the quantity v_{0} / h. The relation between stresses τ_{x} and τ_{y}, and the rate of strain γ_{x} and γ_{y} for a viscoplastic medium is then of the form

$$
\begin{equation*}
\tau_{x}=G \gamma_{x}, \tau_{y}=G \gamma_{y}, G=\left(\gamma_{x}^{2}+\gamma y^{2}\right)^{-1 / 2}+\eta_{0} v_{0} / k_{0} h \tag{2.1}
\end{equation*}
$$

where η_{0} is the viscosity coefficient. The substitution of (2.1) into the equation of equilibrium yields a nonlinear second order equation in partial derivatives with boundary condi tions (on the assumption that particles of the medium adhere to the rigid boundaries)

$$
\begin{gather*}
\frac{\partial}{\partial x}\left(G \frac{\partial U}{\partial x}\right)+\frac{\partial}{\partial y}\left(G \frac{\partial U}{\partial y}\right)=0 \tag{2.2}\\
\left.U\right|_{\Gamma_{2}}=0,\left.U\right|_{\Gamma_{2}}=1
\end{gather*}
$$

Several examples of particular solutions of boundary value problems of viscoplastic material shear $[2,3]$ can be quoted, which show that lines of equal velocities are of a form that is close to that of the flow region boundary. In the immediate vicinity of Γ_{1} and Γ_{2} the lines $U=$ const almost exactly follows the contour of these boundaries. Because of this we define ξ and η by formulas

$$
\begin{align*}
& y=y_{0}+\xi\left(y_{1}-y_{0}\right), \quad x=\eta \tag{2.3}\\
& \xi=(1-y) /(1-\delta \cos x), \quad 1 \geqslant \xi \geqslant 0
\end{align*}
$$

Transformation (2.3) is such that lines $\xi=$ const are cosine curves similar to line Γ_{2} with their amplitude dampened with decreasing distance from Γ_{1}. When $\delta<1$, transformation (2.3) is nondegenerate throughout the region comprised between Γ_{1} and Γ_{2}.

Note that the method of the small parameter requires the more severe restriction $\delta \ll 1$.
Carrying out the substitution $(x, y) \rightarrow(\xi, \eta)$ and omitting the derivatives of U with respect to variable η, we obtain from (2.2) the nonlinear second order differential equation with boundary conditions

$$
\begin{align*}
& {\left[1+(\xi \delta \sin x)^{2}\right] V_{\xi}+\xi(\delta \sin x)^{2} V=0, V=G U_{0 \xi}} \tag{2.4}\\
& \xi=0, U_{0}=0 ; \xi=1, U_{0}=1
\end{align*}
$$

where the variable x appears as a parameter. Integrating this equation and determining the constants of integration by using boundary conditions, we obtain for this problem the zero approximation solution

$$
\begin{aligned}
& U_{0}=I(\xi, x) / I(1, x) \\
& I(\xi, x)=\ln \left[\xi \delta \sin x+\sqrt{1+(\xi \delta \sin x)^{2}}\right]
\end{aligned}
$$

At the limit $\delta \rightarrow 0$ (2.4) becomes the solution of the Couette problem. The solution of problem (2.2) by the method of the small parameter, taking δ for the latter, and taking into account the zero, first, and second approximations, entails a considerable amount of computation, and is not adduced here owing to its unwieldiness.

Numerical values of coordinates along which velocity U is equal 0.5 are tabu lated below

x	0	45	90	120	180
y_{0}	0.5	0.5	0.5	0.5	0.5
y_{1}	0.5364	0.5263	0.5000	0.4792	0.4562
y_{3}	0.5413	0.5296	0.5015	0.4820	0.4634
y^{*}	0.5403	0.5286	0.5012	0.4829	0.4656
y	0.5419	0.5298	0.5014	0.4819	0.4628

Coordinates y_{0}, y_{1}, and y_{2} of line $U=0.5$ were obtained by the method of the small parameter in the zero, first, and second approximations, respectively; y^{*} denotes coordinates determined by the first iteration of the proposed here method, and y relates to the limit value of these coordinates determined by the third iteration of this method.

The author thanks A.V. Rezunov for carrying out numerical calculations on a computer.

REFERENCES

1. Freudenthal, A.M. and Heuringer, H., M三tematical Theories of Inelastic Continuous Medium. Moscow, Fizmatgiz, 1962.
2. Miasnikov, V.P., Some exact solutions for rectilinear motion of a viscoplastic medium. PMTF, No. 2, 1961.
3. Bykovtsev, G.I. and Chernyshov, A.D., On viscoplastic flows in noncircular cylinders in the presence of a pressure differential. PMTF, No. $4,1964$.

Translated by J.J. D.

