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The proposed method is based on the use of certain information of a quali - 
tative or quantitative character about the properties of quantities appearing 
in a nonlinear boundary value problem for its formulation, and thus to simplify 

the original problem. Such information can be provided by solutions of simi- 
lar problems, experimental data, and by some other considerations .The extent 
of simplification evidently depends on the available information and the 

manner of its application. The approximate solution obtained with the use of 
such information is called here the zero approximation. The proposed iter - 

ation method differs essentially from known methods by the procedure of 
determining the zero approximation, and in the iteration process algorithm. 
It reduces a problem in partial derivatives to the solution of an ordinary dif- 
ferential equation for each approximation, which considerably reduces the 

amount of computations as compared to that required by the method of finite 
differences and finite elements. The zero approximation derived by the pro- 
posed method is often equivalent to two or three approximations obtained by 

the method of small parameter (depending on the magnitude of the latter ) . 
The question of the method convergence is not considered here, but the theo- 
rem about the iteration process uniform convergence to the solution is proved. 

1. Let us consider an example of the most effective method of information intro- 
duction in the initial statement of a boundary value problem. We consider for simpli - 

city the elliptic type nonlinear equation 

where D* is an analytic function of eight arguments and U is the unknown function 
dependent on coordinates x and Y. The solution of Eq. (1.1) is sought in the doubly 
connected region 51 bounded by two curves l?i and rs intheplane (z, y) whose 

equations are of the form Ear (2, Y) = a1 and Eoa (z, y) = a, , respectively. 
Let the boundary conditions for Eq. (1.1) be of the form 

u (x, y) Iq = vi = const, i = I,2 (1.2) 

Let us assume that the form of curves U (2, y) = const is a priori known and 
based on some considerations. We define the curves on which the unknown function is 
constant by the approximate equation of the form 

E = E (2, Y) (1.3) 

Since in conformity with (1.2 ) function U is constant along the boundaries r 1 and 
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r t , hence 
E (5, y) Ir, = ai = const (I.41 

Equalities (1.4) can be taken as the equations of boundaries r1 and rZ, respect - 
ively . In boundary value problems the form of function (1.3 ) is often known only at 
the boundaries l?r and TZ , i.e. 

E lri = Lli @, Y) = cli (1.5) 

It is reasonable to assume that within the Q -region function E (2, y) varies 
in the interval [a,, a,] in some continuous manner. The simplest approximate de- 
finition of such function which would satisfy condition (1.4) in accordance with (1.5 ) 

is given by the relationship 

which can be extended by taking into account additional information about function E(x, Y). 
We are, thus, considering the case in which the information about the behavior of 

the unknown function U (5, y) allows an approximate formulation of the equation 
for the set of curves (in this case E = const) along which function U varies little. 

We pass in the problem (1. 1 >, (1.2 ) from variables (5, y) to variables (E, ye) of 
which the variables Q = Q (2, y) may be arbitrary but such that the Jacobian of 

transformation (5, y) --, (E, q) is nonzero in region Q . Equation (1.1) and boun- 

dary conditions (1.2 ) expressed in new variables are of the form 

D (% Glr UVlr % u,, u, E, rl) = 0 (1.7) 
U = 2;i for 4 = Ui, i = I,2 

If the diffemetial equation (1.7 ) does not explicitly contain variable TJ , then 
variable g in (1.3 ) is self-similar and the problem reduces to solving an ordinary dif- 

ferential equation. In the opposite case function U varies along curves E (x, y) = 

const . However according to the method of introduction of variable E in (1.3 ) the 

variation of U along the curve E = const must be small so that derivatives U,,, 

u,, and u,, can be negelcted in Eq. (1.7 > when deriving the zero approximation, 

since it is small in comparison with other terms. For the determination of the zero ap- 

proximation Us (E, q) we thus obtain a nonlinear differential equation of second 

order with two boundary conditions 

DO (Uogg, 0, 0, UOE, 0, us, E, rl) = 0 (1.8) 

U, = 2;i for E = Cli, i E 1, 2 

In the integration of Eq. (1.7 ) the variable r~ plays the part of a parameter and, 
consequently, the approximation U. in (1.8 ) depends on the two variables r; and r). 

We denote function 5 (x, y) in (1.3) by E,, (5, y), sinc;it(;as;)sed in the 
determination of the zero approximation. Having determined 0-0, ,itis 
reasonable to assume that the more exact equation of the curve along which the sought 
solution of u (2, y) does not vary is of the form E = U, (E-,, r), hence for & 
we substitute the new variable 
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L = u* (Eo, q) (1.9) 

Substituting variables (2, y) --f (Ei, q) and repeating the reasoning similar to 
that used after the introduction of variables when deriving the zero approximation, for 
the first approximation we obtain, similarly to (1.8 ) , the nonlinear second order ordin- 

ary differential equation 

D, V&g%, 0, 0, u,g, 0, 017 ED rl) = 0 (1.10) 
U, = 2;i for G = 71i, i = 1, 2 

To obtain the k -th appr~imation it is necessary to make the ~bsti~tiou (X, Y) 

-+ (L, 91) 1 where 

Ek = Uk-l (Ek-l, 7) 
(1.11) 

After transformation (1.11) region fi becomesa doubly connectedset fik (gk, ‘d, 

where a is the closure of region Q. Since problems of convergence are not con - 
sidered here, we can assume that the doubly connected set {a,) has the doubly con - 
netted set fi* as its limit. We set the partial derivatives with respect to the variable 

17 of the unknown function uk (&., q) equal zero 

(1.12) 

Equation (I, 1) in partial derivatives is then again of the form of a nonlinear second 
order ordinary differential equation 

D, (Ukgkfk, 0, 0, &c&’ O, u,, Ekr $ = o (1.13) 

with boundary conditions (1.14) 

U, = t’i for 4k~2’i, i==l,Z (1.14) 

Note that because assumption (1.12 ) is not strictly satisfied, function uk is Only 
an approximate solution of problem (1.1) , ( 1.2 ) . If some approximation U, proves 
to be dependent on the variable h and independent of q, then as~mption (1.12 ) 

is strictly satisfied for U, , and unction U,, (&) is then an exact solution of the 

input problem, In that case Eq. (1.13 ) for U, does not contain ?j. 
For a uniformly convergent iteration process the following relationship is satisfied : 

lim [U, (&, rq) - &I = 0, ii --1w (1.15) 

We denote the limit function of sequence (&} by E* , and shall determine 
whether the limit E* is the solution of the input problem. For this we shall prove the 
following theorem. If in the described above iteration process the sequence of functions 

{u,) with all of their first and second derivatives with respect to variables & and 

rt uniformly converge in the doubly connected region a to some function E* 

which is twice continuously differentiable with respect to the totality of variables, then 
that limit function is the solution of the input problem { 1.1) , (1.2 f . 
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To prove this it is sufficient to verify that function E* exactly satisfies assump - 
tion(l.12), i.e. 

(1.16) 

The last of equalities (l. 16 ) is evident if the first of these is satisfied. According 
to the conditions of the theorem it is possible to differentiate equality (1.15 ) with res - 
pect to variable q, and then, taking into account that ,ek and q are independent var- 

iables, obtain 
lim dU,(&, q)/dq=o, k-+oo (1.17) 

Since lim dUI, / dq = dE* / dq when k * 00, hence (1.17 ) provides the 
proof of equalities (1.16 ) . 

Partial differentiation of equality (1.15 ) with respect to variable & successively once 
and twice shows that the approximation u, for the convergent process has the property 

au, (5,. q) 
lim aE 

aaUk 

k 
=i, limF=o, k-+a, 

k 

( 1.18 ) 

The indicated algorithm for obtaining an approximate solution of problem (1.1) , 
(1.2 ) admits modifications. Thus, instead of (1.11) another method of defining variable 

& is possible, for example 

Ektl = vkUk (Ekr ‘I) + (I - vk) Ek, 1 > vk (3, y) > 0, k > 1 
(1.19) 

Formula (1.19) is unsuitable for defining El when k = 0, since the definitions 
of functions Es and El, (k > 1) are essentially different. Hence it is possible to 

define E, as follows: 

Ei = vouo Go, r) + (1 - VI) UfJ Go, r*j, 1 a va (z, Y) > 0 (1.29) 

where q* is some characteristic value of variable 17 which corresponds to region G. 

A direct test shows that the uniform convergence of the iteration in 0 implies the uni- 

form convergence of function U, in a to the same limit function. Hence the theorem on 

the convergence of approximations to the solution remains valid in the case of ( 1.19 ) . 

2. Let us consdier as an example the problem of pure shear of visco-plastic mat - 
erial between two cylindrical surfaces [ 11 in the absence of rigid zones in-the flow region. 

In a rectangular Cartesian system of coordinates (2, y, z) the surfaces of the stationary 

Pi and moving I’S plates are defined by equations 

y = r/o = h (r,), y = y1 = hi3 co9 x (r,) 

The mobile plate translates at constant velocity VQ parallel to the z -axis. In 
the case of small amplitudes 6 this problem can be solved by the method of the small 
parameter, in which the solution of the Couette problem corresponds to the zero approxi- 
mation. We shall solve the problem by the method described in Sect. 1 without making 
any assumptions about the magnitude of parameter 6. 

We assume in this problem that each particle has a single component of velocity U 
parallel to the z -axis, i. e. 

Ikz = u (5, y), uy = uy = 0 
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Among components of the strain rate tensor the nonzero components are 

yx = autaz, yy = aulay 

We relate velocity U to 00, stresses 2, and 2~ to the yield stress k,, the co - 
ordinates x and y to thequantity h, and the rates ofshear yx and YU to the quantity 

vo/h. The relation between stresses 5 and rY, and the rate of strain YX and Yv for 
a viscoplastic medium is then of the form 

5 = Gym ‘tu = G’YII, G = (~2 + y$‘)-“’ + qov,,/koh (2.1) 

where q. is the viscosity coefficient. The substitution of (2.1) into the equation of equi - 
librium yields a nonlinear second order equation in partial derivatives with boundary condi - 
tions (on the assumption that particles of the medium adhere to the rigid boundaries) 

(2.2) 

u I& = 0, u lr, = 1 

Several examples of particular solutions of boundary value problems of viscoplastic 

material shear [ 2,3 ] can be quoted, which show that lines of equal velocities are of a form 
that is close to that of the flow region boundary. In the immediate vicinity of I’r and rp 

the lines U = const almost exactly follows the contour of these boundaries. Because of 

this we define % and 1 by formulas 

Y = Yo + 5 (Yl - Yo), x=Tl (2.3) 

% = (1 - y)/(l - 6 co9 z), 1 > % > 0 

Transformation (2.3) issuch that lines % = conat are cosine curves similar to line 

I’, with their amplitude dampened with decreasing distance from Tl. When 6 < 1 , 
transformation (2.3 ) is nondegenerate throughout the region comprised between rl andI’,, 

Note that the method of the small parameter requires the more severe restriction 6 < 1. 
Carrying out thesubstitution (+, Y) - (%, q) and omitting the derivatives of U with 

respect to variable q, we obtain from (2.2 ) the nonlinear second order differential equa- 

tion with boundary conditions 

[I f (%6 sin z) 8] VE + % (6 sin z) * V = 0, V = GU,g (2.4) 

% = 0, u, = 0; % = 1, u, = 1 

where the variable z appears as a parameter. Integrating this equation and determining the 
constants of integration by using boundary conditions, we obtain for this problem the zero 

approximation solution 

uo = Z (5, z)lZ (1, 2) 
Z (%, 5) = In [%6 sin 5 + 1/ 1 + (%6 sin 2) 7 

At the limit 6 + 0 (2.4 ) becomes the solution of the Couette problem. The solution 

of problem (2.2 ) by the method of the small parameter, taking 6 for the latter, and 

taking into account the zero, first, and second approximations, entails a considerable 
amount of computation, and is not adduced here owing to its unwieldiness. 

Numerical values of coordinates along which velocity U is equal 0.5 are tabu - 

lated below 
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5 0 45 90 120 180 
YU 
Yl 
Y2 
Y* 0.5403 0.5286 0.5012 

0.5419 
0.4829 0.4656 

Y 0.5298 0.5014 0.4819 0.4628 

Coordinates Y,,, pi, and ~a of line U = 0.5 were obtained by the method of 

the small parameter in the zero, first, and second approximations, respectively : y* 
denotes coordinates determined by the first iteration of the proposed here method, and 

Y relates to the limit value of these coordinates determined by the third iteration of 
this method. 

The author thanks A . V. Rezunov for carrying out numerical calculations on a 
computer. 
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